Finding a largest empty convex subset in space is W[1]-hard

نویسندگان

  • Panos Giannopoulos
  • Christian Knauer
چکیده

We consider the following problem: Given a point set in space find a largest subset that is in convex position and whose convex hull is empty. We show that the (decision version of the) problem is W[1]-hard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erdős - Szekeres is NP - hard in 3 dimensions - and what now ?

The Erdős-Szekeres theorem states that, for every k, there is a number nk such that every set of nk points in general position in the plane contains a subset of k points in convex position. If we ask the same question for subsets whose convex hull does not contain any other point from the set, this is not true: as shown by Horton, there are sets of arbitrary size that do not contain an empty 7-...

متن کامل

Erdős-Szekeres and Testing Weak epsilon-Nets are NP-hard in 3 dimensions - and what now?

The Erdős-Szekeres theorem states that, for every k, there is a number nk such that every set of nk points in general position in the plane contains a subset of k points in convex position. If we ask the same question for subsets whose convex hull does not contain any other point from the set, this is not true: as shown by Horton, there are sets of arbitrary size that do not contain an empty 7-...

متن کامل

Algorithm for finding the largest inscribed rectangle in polygon

In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

The Helly Number of the Prime - coordinate Point Set

In this senior thesis, we study many different properties of symmetric point sets, focusing on points with only prime coordinates. The ultimate goal of this project is to find the Helly number of this prime space. This result is equivalent to finding the largest number of edges that a convex empty polygon is able to have within the space. While there are numeric ways to describe the convex bodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.0247  شماره 

صفحات  -

تاریخ انتشار 2013